Blossom V: a new implementation of a minimum cost perfect matching algorithm

نویسنده

  • Vladimir Kolmogorov
چکیده

We describe a new implementation of the Edmonds’s algorithm for computing a perfect matching of minimum cost, to which we refer as Blossom V. A key feature of our implementation is a combination of two ideas that were shown to be effective for this problem: the “variable dual updates” approach of Cook and Rohe (INFORMS J Comput 11(2):138–148, 1999) and the use of priority queues. We achieve this by maintaining an auxiliary graph whose nodes correspond to alternating trees in the Edmonds’s algorithm. While our use of priority queues does not improve the worst-case complexity, it appears to lead to an efficient technique. In the majority of our tests Blossom V outperformed previous implementations of Cook and Rohe (INFORMS J Comput 11(2):138–148, 1999) and Mehlhorn and Schäfer (J Algorithmics Exp (JEA) 7:4, 2002), sometimes by an order of magnitude. We also show that for large VLSI instances it is beneficial to update duals by solving a linear program, contrary to a conjecture by Cook and Rohe. Mathematics Subject Classification (2000) 68R10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Perfect Matching is in NC

Consider a planar graph G = (V,E) with polynomially bounded edge weight function w : E → [0, poly(n)]. The main results of this paper are NC algorithms for the following problems: • minimum weight perfect matching in G, • maximum cardinality and maximum weight matching in G when G is bipartite, • maximum multiple-source multiple-sink flow in G where c : E → [1, poly(n)] is a polynomially bounde...

متن کامل

Minimum-weight perfect matching for non-intrinsic distances on the line

We consider a minimum-weight perfect matching problem on the line and establish a “bottom-up” recursion relation for weights of partial minimum-weight matchings.

متن کامل

On the inverse maximum perfect matching problem under the bottleneck-type Hamming distance

Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...

متن کامل

A Frontal Delaunay Quad Mesh Generator Using the L ∞ Norm

In a recent paper [1], a new indirect method to generate all-quad meshes has been developed. It takes advantage of a well known algorithm of the graph theory, namely the Blossom algorithm, which computes in polynomial time the minimum cost perfect matching in a graph. In this paper, we describe a method that allow to build triangular meshes that are better suited for recombination into quadrang...

متن کامل

Optimum matchings in weighted bipartite graphs

Given an integer weighted bipartite graph {G = (U ⊔ V,E), w : E → Z} we consider the problems of finding all the edges that occur in some minimum weight matching of maximum cardinality and enumerating all the minimum weight perfect matchings. Moreover, we construct a subgraph Gcs of G which depends on an ǫ-optimal solution of the dual linear program associated to the assignment problem on {G,w}...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program. Comput.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009